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EXPLICIT BOUNDS FOR PRIMALITY TESTING

AND RELATED PROBLEMS

ERIC BACH

Abstract. Many number-theoretic algorithms rely on a result of Ankeny, which

states that if the Extended Riemann Hypothesis (ERH) is true, any nontriv-

ial multiplicative subgroup of the integers modulo m omits a number that is

0(log m). This has been generalized by Lagañas. Montgomery, and Odlyzko

to give a similar bound for the least prime ideal that does not split completely

in an abelian extension of number fields. This paper gives a different proof of

this theorem, in which explicit constants are supplied. The bounds imply that

if the ERH holds, a composite number m has a witness for its compositeness

(in the sense of Miller or Solovay-Strassen) that is at most 2 log m .

1. Introduction

Many number-theoretic algorithms rely on the ability to quickly find a number

outside a nontrivial subgroup of the multiplicative integers modulo m . In this

context, one often appeals to a theorem of Ankeny [4]:

Let G be a proper subgroup of the multiplicative group of in-

tegers modulo m . Then, assuming the Extended Riemann Hy-

pothesis (ERH), the least positive integer outside G is 0(log m).

A generalization of this, due to Lagarias, Montgomery, and Odlyzko [24],

replaces the rational numbers by any algebraic number field and states a similar

bound for the least prime ideal outside a nontrivial subgroup of a "generalized

class group":

Let K be an algebraic number field whose discriminant has

absolute value A, and let £ be a nontrivial finite abelian ex-

tension of K , of conductor ,. Then, assuming the ERH, the

least prime ideal of K that does not split completely in the

extension E/K has norm that is 0(log"(A A/f)).

The purpose of this paper is to supply explicit constants in the above theo-

rems. In the author's dissertation [5], an explicit constant of "2" for Ankeny's

Received March 8, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 11Y11; Secondary 11A15,
11M26, 11N25, 11R29, 11R44.

Key words and phrases. Primality, Extended Riemann Hypothesis.

This research was sponsored by the National Science Foundation, via grants DCR-8504485 and

DCR-8552596.

©1990 American Mathematical Society

0025-5718/90 $1.00+ $.25 per page

355

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



356 ERIC BACH

theorem was proved. No constant for the second theorem has heretofore been

published; we show below that "3" suffices. In addition, we show that both

theorems hold with a coefficient of 1 + o( 1 ), and tabulate bounds that are close

to the asymptotic value. Finally, we give bounds which are useful in situa-

tions where one wishes the small primes to satisfy other conditions; these extra

requirements are explained in the two paragraphs below.

The first extra requirement arises because bounds on prime ideals are often

used to derive bounds on ordinary prime numbers with specified properties.

The idea is to choose E/K in such a way that a degree-1 prime ideal p of K

that does not split completely in the extension lies above a prime number p

with the desired property. A bound on the norm of p immediately implies a

bound on p (see [6] for an example of this technique).

The second extra requirement is that the prime ideal should be unramified

in E/K ; in the case of Ankeny's theorem, this means that one seeks a number

outside G and prime to m . Often this requirement is unnecessarily stringent;

for instance, in testing m for primality, one would be happy to find a nontrivial

divisor of it. Nevertheless, completeness demands that this case be treated; this

fills in a lacuna in [5] in which no bound was given for the least unit outside a

nontrivial subgroup of a multiplicative group of integers.

Before proceeding with the analysis, it will be useful to discuss the role of

ERH-based results in the design and analysis of algorithms. The ERH encapsu-

lates certain intuitions about the observed behavior of number-theoretic func-

tions, and this fact alone gives it value as a heuristic principle. Though it has

never been proved, it has been subjected to intense computational scrutiny, and

no counterexample has ever been found [7, 13, 14, 23, 28, 33, 41, 42, 47], A

result based on this hypothesis can therefore be thought of as progress toward

the ultimate goal of an unconditional result.

Among such algorithmic results that employ the ERH one may cite polyno-

mial-time primality tests [30, 45], efficient algorithms for factoring polynomials

over finite fields [2, 20, 38], methods for integer factoring [27, 39, 40], and an

"almost" polynomial-time primality test [3, 11],

Lifting a term from the argot of computation theory, most of these algo-

rithms are of "Las Vegas" type: any answer produced by them is correct, and

the correctness does not depend on the ERH. However, the polynomial-time

primality tests referred to above are different: they search for "witnesses" to a

number's compositeness up to the bound given by Ankeny's theorem, and de-

clare the number prime if none are found. To implement such algorithms, or

even to compare them to other methods, explicit constants are essential.

Even assuming the ERH, it is an open question if the estimates given here

are of the right order of magnitude. From the available numerical evidence,

the least quadratic nonresidue modulo p appears to grow no more quickly than

a small constant times log p [26], The scant evidence on prime testing [35]

suggests a bound of perhaps 0(log n) for the least witness to the compositeness

of n . Graham and Ringrose [ 18] have shown that the least quadratic nonresidue
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EXPLICIT BOUNDS FOR PRIMALITY TESTING 357

modulo a prime p is infinitely often Q(logp log log log/?), and Montgomery

[31] gave a bound of f2(log/?loglog/?) assuming the ERH. However, in our

present ignorance about the vertical distribution of the roots of zeta and L

functions, choosing among these growth rates seems impossible, even with the

ERH.

The remainder of the paper is organized as follows. Motivation for the proof

is given in §2, and then §3 is devoted to summarizing the definitions and results

from algebraic number theory that will be needed later. The asymptotic result

(Theorem 1 ) is proved in §4, assuming some messy details that are proved in

§5. Because relatively more is known about the zeta functions involved, explicit

constants for the rational case are presented in §6 (Theorems 2 and 3), with §7

treating the case of degree 2 and higher (Theorem 4).

2. Motivation

This section is intended as a guide to the more technical arguments that

follow; details will be glossed over or even skipped altogether. For the moment

we discuss the rational case only, following [5],

The proofs in this paper derive ultimately from a proof of the prime number

theorem. Perhaps the most natural variant of this theorem says that about one

in log n numbers near n is prime; this gives a heuristic for estimating sums

over primes:

f(n)E/uo~£ log«

Let A(n) equal log p if n is a power of a prime p , and 0 otherwise. Then the

above result says that whenever A appears in a sum, it should be disregarded;

for example

x
sM=£('-><»>~E(>~)

How might one try to prove such an assertion? The basic idea in analytic

number theory is to use transforms to decompose such sums into a main term

(e.g., x/2 ) and other terms that grow less rapidly. In the above case, it can be

shown that
,   >      -2Í [2+¡oc   sí_1_

g(X) - 2ni J2_loc X \s(s+l)

where C denotes the Riemann zeta function.

One can therefore think of the transform

G(S) = H7TTJT(S)

as another representation of the original function g . Just as in the analysis of

physical systems, the behavior of g is governed by the location of the poles

of C7.
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358 ERIC BACH

Formally at least, one can evaluate the inverse transform by residues and find

x -"

*<*) = t-Ey p(p + y
+

where the sum is over zeros of the zeta function with 0 < Re p < 1 and " • • ■ "

indicates terms of smaller order that are of no concern here.

The pole of Ç at 5 = 1 contributes the main term, and the Riemann hypoth-

esis implies good estimates on the second term. More precisely, if each root p

is of the form 1 /2 + ico, then the latter sum has the form

sßeia>loiX

Ç p(p+i) '
and each oscillatory term in this sum grows much less rapidly than the main

term x/2. It would follow from the Riemann hypothesis and the estimate

£|/>f2 < °° that

E(l-j)A(») = f + 0(>r<x).
«<.v

Montgomery [31] used this idea to give a proof of Ankeny's theorem. Let x

be a character on Z/(m)*, and suppose that#(«) =1 for all n < x . Then

E{*-x)A(n) = ¿:(l-^A(n)x(n),
n<x n<x

and one can also consider the right-hand side as a transform:

Til--) Mn)x(n) = fi [2+,00xs { —^ ■ ̂(*) j ds.
^V       x' 27iiJ2_ioo       \s(s+\)    Ly'j

Here L denotes a function similar to the zeta function but lacking a pole or

zero at 1. The expression is thus "all error term":

E(,-i)A(.)z(.)-ES^TJ + --
n<x p    r^r '

If L satisfies the Riemann hypothesis, then combining the above results gives

U^T.
1

P(P+K
+

p

One now needs to estimate the sum over the roots of L ; at this point we

only offer an explanation, not an argument. In some sense, the roots of L have

a "density" proportional to log m, and since the corresponding sum for £ is

finite, one might expect that the above sum is 0(log m). This is indeed true, and

so for some A > 0 , </x < 2A log m + ■ ■ ■ which implies that x < 4A (log m)

asymptotically.

The basic trick in getting good numerical estimates is to derive a version of

the above inequality with a parameter in it. (This idea appears in [ 16, p. 19-13].)
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EXPLICIT BOUNDS FOR PRIMALITY TESTING 359

2
This is done by replacing the rational function 1/(5 + s) in the transform by

(s+a) , and using a formula due to Stark [44] to explicitly calculate 2~II^+fll

Finding the best value of a involves a tradeoff; small a's give a good asymptotic

constant (which is good for large m ), but large a's make the error terms small

(which is good for small m ). To get the best results, a has to be chosen

appropriately for the m of interest.

This section has discussed the rational case only, but the same ideas apply

to the general case. Here sums over primes are replaced by sums over prime

ideals, but the entire apparatus of zeta and L functions can be generalized,

including Stark's formula. However, since less is known about these functions,

the resulting bounds are correspondingly less sharp.

3. Notation and background

This section summarizes the notation and facts assumed in the remainder of

the paper. The viewpoint is quite general, but the concepts easily specialize to

the rational case (see the remarks at the end of the section). References for this

material include [8, 17, 19, 25],

In this paper Z, Q, E, and C denote the integers, rational numbers, real

numbers, and complex numbers, respectively. An inequality such as x < y for

complex numbers indicates that the corresponding relation holds between real

parts.

Throughout, K will denote an algebraic number field of degree n, with

r, embeddings into 1 and 2r2 into C (thus n = rx +2r2). Let A denote

the absolute value of K's discriminant; Minkowski's theorem (see [25, p. 121])

states that n = 0(log A).

Let O denote the ring of integers of K. If 21 is an ideal of O, then A/21

denotes the size of the quotient ring 0/21. (In this paper, ideals are assumed

to be nonzero, so that N21 < oo .) An ideal of O can be uniquely decomposed

into a product of prime ideals, and two ideals 21 and <8 are called relatively

prime — this is written (21, 2$) = 1 — if the prime factors of 21 are distinct

from the prime factors of 23. If p is a prime ideal, then for some (ordinary)

prime number p , Np = p  ; the exponent / is called the degree of p .

A character * is a function on the ideals of O that arises in the following

fashion. Let K c E be a finite field extension with an abelian Galois group.

For a prime ideal p unramified in this extension, let

(wk)£G*{E'k> = g

denote the Artin symbol of p. Let <f> be a homomorphism from G into the

complex roots of unity. This induces a function on prime ideals given by

*<» = *(ä7i)
when p is unramified, and 0 otherwise; x is then extended by multiplicativity

to be a function on all ideals.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



360 ERIC BACH

If E1 is a proper subfield of E, then a character x defined using E' might

agree with x whenever x í 0 • X is then said to be induced by / ■ If no such

subfield exists, x is called primitive. A character that takes only the values 0,

1 is called principal.

A number t e K is said to be totally positive if it is positive in all real

embeddings (for example, 1 is totally positive). For any character x > there is

an ideal f of O such that x((t)) = I for all totally positive / congruent to

1 modulo f. In this case x is said to be defined modulo f ; the ideal of least

norm with respect to which x is defined is called its conductor. For primitive

characters with conductor f, let

(3.1) Ax=à-Nl.

Each character has an associated parameter ß that measures its dependence

on signs. It is defined using the following fact: there exist numbers a; e {0, 1},

1 < i < rx, such that for any t = 1     (mod f), x((t)) = ri(sign/,)a' . Then ß

denotes the number of l's occurring in the list a,,..., ar   and a denotes
1 rt

rx - ß ; note that 0 < a , ß < n .

Let y/ denote the logarithmic derivative of the gamma function. y/ satisfies

the recurrence relation

(3.2) y/(z) = ip(z+l)-l/z

as well as the duplication formula

(3.3) yv(z/2) + ip((z + l)/2) = 2(y/(z) - log2).

Over the range (0, oo), the function y/ has derivatives of all orders that al-

ternate in sign. Thus, y/ is increasing, y/' decreasing, and so on. For future

reference, differentiating (3.2) gives

(3.4) y/'(z) = y/'(z+l) + l/z2.

The Hecke L-function associated with a character x is

(3-5) ^/) = Ef.
21

A special case is when x is the trivial character (always 1); this gives the

Dedekind Ç, junction of K :

1
(3.6) C(s) = E

Hecke L-functions are analytic in the whole plane, with the exception of

a simple pole at 5 = 1 (which occurs if and only if x is principal). The

functions associated with primitive characters satisfy a functional equation due

to Hecke [19, p. 35] which implies that they have infinitely many zeros in the

strip 0 < Re(5) < 1 ( p will denote such a zero), as well as zeros at certain

nonnegative integers. The Extended Riemann Hypothesis asserts that all Hecke

L-functions are zero-free in the half-plane Re(s) > 1/2.
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EXPLICIT BOUNDS FOR PRIMALITY TESTING 361

The logarithmic derivatives of these functions will be used later, and we

summarize some of their properties below. First, for Re(s) > 1, there are

absolutely convergent representations

0 7) Zts)ss-ym
[X) C[)        ^ Ntf

and

(3 81 L'(s\-    \-AWx(*)
(3-8) ¿()~V     A/2c      '

where A(2l) = log A/p if 21 is a power of a prime ideal p and 0 otherwise. For

any s, if

ii o\ f\       A+r2      fS\   ,   r2      [S+l\       «log 71
(3.9) Wr(s) = -L^y, (-) + ^ [—) - -y-

and

nim ,,     r2 + a    (S\r2 + ß    Is + l\     nlogn
(3-10)      n(s) = ̂ -w (5) + ̂ rv [—) - -y-.

then

(3.11) ^)=i + c(-I_ + i)-^„gA-i-Fl7-i-t(s)

and (for primitive nonprincipal characters x )

(3.12) ^{s) = Bx + ^(^ + ^y\logAx-WL(s)

[22, p. 433]. The precise values of the constants B and B axe unimportant:

if the sum is taken in symmetric order, then B + X] p~ = 0, and similarly for

B . Several later arguments will rely on the convergence of J2\p\ '> f°r tne

Riemann zeta function the sum is known:

(3.13) Y* —7 = y+ 2 -log(4rc) = 0.04619... .

(Here and elsewhere, y is Euler's constant, approximately 0.57721... .)

For future reference, information about the poles of the logarithmic deriva-

tives is summarized below; here, L is associated with a primitive, nonprincipal

character, and roots p in the critical strip are to be counted with appropriate

multiplicities.

Place Residue of v Residue of ¡j- Residue of y - 4-

1 -10-1

/»(ofC) 1 0 1
p{ofL) 0 1 -1
0 r, + r2 - 1 r2 + n ß - 1

-1,-3,-5,... r2 r2 + ß -ß

-2,-4,-6,... r, + r-, r-, + n ß
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One may also interpret characters as discrete characters of the idele class

group of K ; as this group is constructed arithmetically from K , one may thus

avoid reference to the extension E . The definition of this group is complicated

and will not be given here (but see [8, p. 204 ff]). In special cases, however,

characters may be defined using simpler groups associated with K ; as these

cases are important in the construction of algorithms, we review them below.

(1) If K = Q, then A = rx = 1 and r2 = 0. A character x on 1/(m)*

induces a character in the sense of this paper, by taking its value on (t), t > 0,

to be x(t) ■ In this case, the conductor of x is a divisor of m , Ç is the Riemann

zeta function, and L is the Dirichlet L-function associated with x ■ Also, ß

is the parity of # ; it is 0 if x(~l) = 1 and 1 if ^(-1) = -1. See [12] for

more discussion of this case.

(2) If K's ring of integers does not have unique factorization, then it has a

nontrivial class group. This is a finite abelian group, and a character on this

group induces a character in the sense of this section, for which f = 1 . The

parameter /Ts possible values are controlled by the possible signs of units in

K. The case of quadratic fields is especially important. If K = Q(\/d) for a

squarefree integer d, then A is at most 4\d\. For imaginary quadratic fields

(d < 0), r, = 0 and r2 = 1 , so that ß = 0. For real quadratic fields (d > 0),

rx = 2 and r2 = 0, and ß = 0 unless the fundamental unit of K has negative

norm, in which case 0 < ß < 2. See [9] for more discussion of quadratic

fields.

4. AN ASYMPTOTIC BOUND

In this section we prove an asymptotic bound for the least character non-

residue, assuming some details from §5. The first four lemmas prove an explicit

formula on which all the theorems of this paper are based.

Lemma 4.1. For 0 < a < 1 and v > 0,

Ini J2
2+'°°     /       .       f v a-logv       (v> 1),

ds =
s + a)2 10 (0<v<l).

Proof. This is a residue calculation, and can be modeled on the proof of The-

orem B in [21, p. 31].    D

Lemma 4.2. For 0 < a < 1 , and any character x (possibly the principal one),

Proof. Expand l!/L by (3.8), then interchange summation and integration

(this is justified because the integral is absolutely convergent). Then apply

Lemma 4.1.   D
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Lemma 4.3. Let x  be a character and let S be any set of ideals such that

X(W)= 1 for all ideals 21 outside S with A/2l< x. Then, if 0 < a < 1,

-i [2+i°°   xs    (C__!¿

(s + a)2\C      Llut J2.
(s)ds

IOC

EAW-,MW^(i).V x  ]
aes

Proof. Subtract two instances of Lemma 4.2.   D

Lemma 4.4. Let x be a nonprincipal primitive character, and let S be a set of

ideals such that ^(21) = 1 for all ideals 21 outside S with A/21 < x. Then, if

0<a<l,

p
-7   =   T±-7   +I() + I
(a+\)2     V    (P + a) "p

+

aes

EaMi-aÍtÍMa)'V x I
N<&<x

where in the first sum a '+ ' sign is taken for each root of Ç(s) and a '- ' sign for

each root of L(s, x) < and

4 Ç-Î M-»-  '
l.-ß±    ,-1,t

+^2(a-k)2xk'

Proof. Formally, this results from evaluating the integral in Lemma 4.3 by

residues, using the table at the end of §3. It can be justified similarly to the

proof of Theorem 28 in [21], using estimates for L'/L given in (5.6), (6.2) and

(6.3) of [22].   a

The equality in Lemma 4.4 implies that x cannot be too large, as its left-hand

side is proportional to x, whereas its right-hand side is 0(y/x) if the ERH is

true. To derive actual bounds on x , it is necessary to estimate the terms on the

right-hand side. Section 5, assuming the ERH, provides the following bounds,

in which the implied constants in " 0" terms can depend on a, but not on n
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or x-

W   E ;-â $ ^rvrt10^ W + Mv(a +1) - iog(2>o) + o(i)],
\p + a\       la+ l

(2)   I =0(n) + 0(logx)^—1-~2
\P + a\

(3) l_ = 0(n),

(4) J2   A(a)[l-/(2l)](^2l/x)alog(x/^2l) = 0(logx-logArf),
N<a<x

(a,f)^i

(5)      J2 A(P H1 - X(p)](Np"/x)a log(x/Npk) < 4n(^ + 0(x")).

Nfk<x

degp>l

(These are proved in Lemmas 5.6, 5.4, 5.1, 5.7, and 5.8, respectively.)

Theorem 1 (ERH). For i = 1,2, ... let Kj be a number field whose discrimi-

nant has absolute value A;, with a nonprincipal character x¡ defined modulo , ..

Let p( be a prime ideal of minimal norm such that yf,-(p(-) ^ 0, 1 and degp; = 1.

Assume that A(./yf(. —> oo as i —► oo. Then

Npi<(l+o(l))log2(A2N,i).

Proof. Let e > 0. We will show that as AN, —► oo (dropping the subscripts),

A/p<(l+e)log2(A2A/f)(l+o(l)).

Choose a in the range 0 < a < 1 such that

(1+a)4   <1+£    and    y(q+l)-log(2,Q
(2íz+1)2 2a+1

(this is possible because \p(l) =—y =-Q.51121... ). Consider the set of ideals

2t for which either /(2l) e {0, 1} or 21 has a prime ideal factor of residue

degree greater than 1. This set is multiplicatively closed, so any least-norm

ideal p outside the set will be prime. Let x = Np, S = {p : deg p > 1 or

(p, f) ^ 1}, and apply Lemma 4.4, using the primitive character induced by

X. This character is defined modulo some divisor of f whose norm does not

exceed TVf. By (2)-(5) above and ERH,

x

(a+l)2
< (v^ + 0(log x)) ( £ —{—2 + 4n)

\^\p + a\¿        j

+ 0(n) + 0(log x log A/f) + 0(nx'/4)

By ( 1 ) and the second requirement on a,

E —^I + 4n Í örTATT^0^2^ + °(^-
„\p + a\ 2a+i
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Also, n = O(logA) (by Minkowski's theorem), so that

< ^-r(log(A2/Vf) + 0(l))(Vx + 0(x1/4)).
(a+\)2     2a + 1

Divide by y/x to get

< ^-^log(A2Nl)(l + 0(l/log(A27Vf)))(l +0(x"1/4)).
(a+l)2     2a +1

2      2
If x < log (A A/f), there is nothing to prove, otherwise

v^<^^]-log(A2A/f)(l+o(l)),

which gives the desired bound.   D

Before giving the detailed proofs of (l)-(5) above, we should mention some

analytic issues connected with the above theorem. First, the full ERH is not

necessary for the bound to be polynomial in log(AArf). It would suffice that the

relevant functions be zero-free in a strip Re(^) > 1 - e for some e > 0, but

even such a "weak Riemann hypothesis" is not known. Second, the presence of

a so-called "Siegel zero" p of L with 1/2 < p < 1 would improve the ultimate

bound.

5. Detailed estimates

This section fills in the missing details in the proof of Theorem 1. The results

will be used later, and so are done in explicit form.

Lemma 5.1. Let I_ be defined as in Lemma 4.4. Then

/_<-P-T-j = 0(n).
(a - 2)V

Proof. It will suffice to show that for k, x > 1  and 0 < a < 1 ,

1 > l

xk(a-k)2     xk+\a - (k + l))2■'

which can be seen by noting that a is closer to k than to k + 1 .   D

Lemma 5.2. Let x be a primitive character. Then the following representations

are valid for all s (taking in the sums a '+ ' sign for a root of Ç and a ' - 'for

a root of L(s, x) in the critical strip):

ÍC     L'\ ^,(    1 1     \     1 1
C      L) „      \s - P)     (2 - p) J     s     s-l

'3
y/(\) + y/ ,
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366 ERIC BACH

and

T-r)w = S>; J + AA +
ß_

a    4
; fS

¥
(ï) - •

5+1

(j-/>r  ^   (i-ir
Proo/. To get the first equation, express (Ç1 /Q(s) - (C'/C)(2) using (3.11) and

(L1 /L)(s) - (L1 /L)(2) using (3.12), subtract the results and rearrange terms. To

get the second, differentiate; the formal computation can be justified knowing

that J2\P\~2 < °°-   D

Lemma 5.3. Let x > 1 and 0 < a < 1. Then

a2     a2xa

logx

axa
>0   and +

logx

(a-1)2     (fl-l)V-1  ' xfl-'(l
>0.

Proof. The function f(t) = x' is convex, so

1 ff(0)-f(-a)
/(-«)) >0.

Multiply this by  I/a and rearrange to get the first inequality.   The second

inequality is proved similarly by considering f(0) and fi(l - a).   D

Lemma 5.4 (ERH). Let IQ be defined as in Lemma 4.4.  Then for 0 < a < 1

and x > 1,

ß - 1 Ï     log x
/0 < max <j 0, —y- } 4

Ea 4- 2       5-,4-^ 4
1

X E
1

/> + a|
+ 1

i p   \P + a\

Proof. First assume that ß = 0. Then, taking s = -a in Lemma 5.2 and using

the definition in Lemma 4.4 yields

'o=-
1       log X 1

ax a2xa
4

logx

X
Z+± + (i-£\mS

+ 1 Í

1
+ —

X E'
1

(a + iy

where

E = E± -a- p     2- p) ' E' = E^(p + a)

If the ERH holds, then

1

ENE
1

[p + a)     2-p
< E

24a

\(p + a)(p-2)\
< E

24a

P + a\:

and the result follows in this case by estimating Yl' m a similar fashion and

using (3.7) and (3.8) to show (C'/C - L'/L)(2) < 0.
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Now assume that ß > 1 .  Using Lemmas 4.4 and 5.2 and using (3.2) and

(3.4) to rewrite y/((l - a)/2) and y/'((l - a)/2) produces

h =
1      log X

E+i + -LT¿-^   a     a+l

V(l) + V [ j

(2) +

4
X

if
X

_J_
(a-l?

Only the middle two terms must be estimated (the first occurs in the lemma,

and the last is negative by Lemma 5.3). To estimate the second term, apply

(3.2) twice to y/(-a/2) and use the monotonicity of y/ to see that y/(-a/2) -

ip((3 - a)12) -^(1)4- y(3/2) is nonnegative. Then replace ß by 1 and cancel

the pole at a = 0 to get an upper bound for this term of

logx

x E+ÎTÎ-Ï "(•-!) w
3-fl

V{l) + V\ 2 + 2

The function l/(a 4 1) - \{yt(\ - a/2) - ip{{3 - a)/2) - tp(l) + ^(3/2)} is
convex when 0 < a < 1 , so it is maximized at the endpoints and therefore is

at most 1. To estimate the third term, apply (3.4) to yi'(-a/2) and then use

the monotonicity of y/'.   D

Lemma 5.5. Let a > 0, a

1

a + 1 and p = 1/2 + ico. Then

1/1 1

\p + a\2     2a+l \o

Proof. This is an algebraic identity.   D

4
a-p

Lemma 5.6 (ERH). If x is primitive, then

E
1 1

p + a\¿ 2a +1

AAy
log^f + 2

.2«

1

4 (n + a)\p

a+ 1

a+ 1

1
4 -

a

4 (n - a)y/

X,

a + 2

L'

<
1

2a + 1
log(A/l1,)4 2«(^(a4

4 2^(l4a)4 2Re^(l+u)

[lä + }J+-l

where the sum is over the roots of C and L (with multiplicities)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



368 ERIC BACH

Proof. Let o > 0; substitute s = o in (3.11) and (3.12) and add the results to

their conjugates to get Stark's formula

E( — + -¿—' \ rs — n       n —

= \og(AAx) + 2^4 ^—) + 2(ipr(o) 4 y,L(o)) + 2^(o) + 2Re±-(o)

[44]. Use (3.9) and (3.10) to express yir + y/L; then substitute a = a 4 1

in the above formula and use Lemma 5.5 to get the first equality. The upper

bound uses the duplication formula (3.3), monotonicity of y/, and the estimate

(C/Q( l+a) + Re(L'/L)( 1 + a) < 0 (a consequence of (3.8)).   □

The above estimate and results derived from it are the most critical ones in the

paper. In particular, any sharper estimate than (C/Ç)(l+a)+Re(L'/L)(l+a) <

0 is useful; this can be provided in the rational case, as explained in the next

section.

Lemma 5.7. Let co(f) denote the number of distinct prime ideals dividing ,. For

0<a< 1,

E Mm - *(•» (£)' .o6 (£) <_ î^-o) <- ̂™,
(a,i)^i

where e = 2.718281...  is the base of the natural logarithm.

Proof. When  1 < / < oo, the function t~a log t is maximized when log t =

1 ¡a, so it is bounded above by 1 ¡ea . Therefore, the sum is at most

2     v-^    ./on      2 \^i     Ki      ]°%x     ^21ogx>-^

Ta   £  AW = -E^P ToJTvp  ^-T^Ç1'
(a,n^i

this proves the first inequality.  The second is true because every prime ideal

has norm at least 2.   D

Lemma 5.8 (RH).  We have

E   A(P*)[1-X(PA)](^)   log[^]<4n(v^4 0(x1/4)),

degp>l

where the constant implied by the " O " symbol is absolute.

Proof. Since 0 < a < 1 , the sum is at most

\£A,'i,l08te)
Vp <v

deg p>l
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Consider the contribution to the above sum from the prime ideals lying above

a fixed rational prime p , and for some fixed value of k . This is

deg p>l deg p>l

< 2   E   fp loS P loS

deg p>l

< 2nA(p ) log

(here / denotes the residue degree of p ). Hence, the whole sum is at most

2« V] A(m)log(—y ) = 4n V] A(m)log
r- \m J ,-

m<y/x m<y/x

Since the Riemann zeta function has no pole at 0, we can take a = 0 in Lemma

4.2, integrate by residues and get the explicit formula

L)=t + T^ + 0(i).

The result follows from (3.13).   D

Lemma 5.9. We have

Npk<x ^ ' \    v   / m<y/x

deg p > 1

Proof. Similar to that of Lemma 5.8.   D

6. Explicit bounds for the rational case

This section gives explicit versions of Theorem 1 when K is the field of

rational numbers. This is worth treating separately because much more is known

about the Riemann zeta function than for zeta functions of general number

fields, and the results are correspondingly sharper. The case where K has

degree greater than 1 is left to §7.

By the Kronecker-Weber theorem, any abelian extension of Q is contained

in a cyclotomic extension whose Galois group is isomorphic to a multiplicative

group of integers. One may also identify characters (in the sense of this paper)

with ordinary Dirichlet characters, which are essentially homomorphisms from

such groups into the complex roots of unity.

Therefore, this section deals with Dirichlet characters exclusively. In this

section, .rv=Q,so n = A = 1, r{ = 1, and r1 = 0. ^ is a nonprincipal

character on 7L(m)*, m > 2 , whose parity is ß  (0 if ^(-1) =1,1 otherwise).

yx

m

y~] A(m)log
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Thus, a = I - ß. C and L denote the Riemann zeta function and Dirichlet

L-function of x > respectively; they are defined by (3.7) and (3.8), where sums

over ideals are replaced by sums over positive integers.

The general plan of this section is the following. The explicit estimates of §5

combined with the proof of Theorem 1 produce inequalities (Lemmas 6.1 and

6.2) that the least "good" positive integer n must satisfy. These inequalities

lead to simple bounds (Theorems 2 and 3) that can be verified by hand, as

well as more complicated machine-generated bounds that are tabulated in the

appendix.

Lemma 6.1. Let x be a nonprincipal character on Z/(m)* with x(n) = 1 for

all positive n < x. Then, if 0 < a < 1,

y/x 1

(a+l)       2a+1

where

, _ (a 4 2) log x 4 1 , _ | log x 4- 1   _ ß

{)~~      x"+l'2        '        S[X)~     x^2        (a-2)2x5'2,

and

t(x) = - log 7T 4 yy (a + 2 + l) + (2a + l)(y + 2- \og(4n))

+ 2f(l+„) + 4E^.
^ n>x n

Proof. Take S = 0 in Lemma 4.4, and use Lemmas 5.1 and 5.4 to estimate

/_ and I0 (note that ß < 1) ; this produces

^ , < =-Vt(1 4 r(x)) Y-l—j + s(x).
(a+l)2     2a+ly "^\p + a\2

By Lemma 5.6,

E^
,     m      „(I 1
log — 4 2 ( - 4

7T v a ' a 4 1

'a+l\ (a + ß+l

p + a\2     2a + I

C' L'
+ 2^-(l+a) + 2ReT(l+a)

s E

Put 5 = 1 4 a in (3.11), and use Lemma 5.5 and (3.12) to get

2^(1 4 a) 4 ip (^-) - log Ti 4 2 (- +
\   2   ) \a     a+l

<(2a+l)T —!—I < (2a + l)(y + 2 - log(4;r))
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(note that the roots of Ç axe symmetric about the real axis). Since x(n) = 1

for all n < x , (3.7) and (3.8) with s = I + a imply

x(i+«)4(i+*)+2£^-
«>.v

Combining the last three inequalities shows that the sum over the roots of Ç

and L is at most log m + t(x), and the result follows.   D

Lemma 6.2. Let x be a nonprincipal character on Z/(m)*  with x(n) £ {0, 1}

for all positive n < x. Then, if 0 < a < 1,

[x 1
< ^-r(l +r(x))[log m + t \x)] + s(x) + u(x)co(m),

(a+l)2     2a 4 1

where s(x) and r(x) are defined as in Lemma 6.1 and

t\x) = -\ogn + y,(^±±)+(2a+l)(y + 2-\og47i) + 2j2^,
^ ' n>x n

,    y          2l0gX
U(X)=  -f=r.

eay/x

Proof. This is like the proof of Lemma 6.1, with the following exceptions. In

Lemma 4.4, S = {n: gcd(m, n) ± 1}, the first inequality of Lemma 5.7 is used

to estimate the new term which results, and l!/L is estimated with

!<.+«)< E-
L n>x n

A(n)
D

\+a

To use these inequalities, it is helpful to have estimates for the prime number

functions appearing therein.

Lemma 6.3. Let p(x) = 5Z„<V A(«), and choose A, B > 0 so that p(t) < At

(for all positive t ), and p(x) > x - By/x . Then

EA(«)</   (o+_l)_
fki nUa -\       a«>.y

roo   -(1+a)

yß) X"

Proof. The sum is /~ ; dp(t) ; apply Stieltjes integration by parts.   D

For x < 108, (3.35) and (4.5) of [37] give the explicit values A = 1.03883,

5 = 2.05282.

Lemma 6.4 (RH). Let co(m) denote the number of distinct prime factors of m.

Then for m > 210,

oj(m) < co(m) = li(log m) + QA2yJ\og m,

where li(x) is the Cauchy principal value of /0X dt/ log /.  Moreover, for such

m , 7o(m)/(\og m) is a decreasing function.
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Proof. The first assertion is due to Robin [36], under the assumption of the

Riemann hypothesis. To prove the second, note that there is a number x,

between 3 and 4, for which li(x)/x = 1/logx. For x > x, li(x)/x is a

decreasing function of x . This easily implies the second assertion,   o

Theorem 2 (ERH). Let G be a nontrivial subgroup of Z/(m)* such that n e G

for all positive n < x. Then x < 2(log m)  .

Proof. Without loss of generality, G is maximal. There is then a nonprincipal

character x with G c kernel(x), and it will suffice to assume that x(n) = I

for all n < x .

First assume m > 1000, and take a = 1/2 in Lemma 6.1. By Lemma 6.3,

0 < log m + t(x) < log m (appropriate values for y/ and Ç'/Ç can be found in

[1,46]). Thus,

\/x < ö log m 1 4 r(x) +
2s(x)

log m
< - log m 1 + r(x) +

2s(x)

log 1000

But the right side is less than \/2\og m , which proves the bound.

Now let m < 1000. If m < 3 , there are no nontrivial subgroups of Z/(m)*,

so there is nothing to prove. If m > 3 is a prime, m has a primitive root less

than 1.7(log m) [48]. Finally, if m is composite, it must have a divisor that

is at most y/m, and yfm < 2(log m)~ for 6 < m < 1000, by a convexity

argument.   D

Theorem 3 (ERH). Let G be a nontrivial subgroup of Z/(m)* such that n e G

for all positive n < x relatively prime to m . Then x < 3(log m) .

Proof. We will show this holds for m > m0 = 10 ; the other values of m can

be checked by computation. By Lemmas 6.2 and 6.4,

^fx~
(a+ 17*

1^ a>K)

2a + 1 log wn
log m + s(x) + t (x)

1 4 r(x)

2a + 1

Let a = 0.6 ; for x > 3 log m0, the second term on the right-hand side is

negative and can be ignored. The first term gives a bound for y/x that is

proportional to log m, and direct substitution shows that the coefficient is less

than V^.   D

To verify Theorem 3 for all m < 106, the author wrote a program to find,

for each such m, a set of small primes that generates Z/(m)*. Since m is

relatively small, the task can be done by the following procedure. Factor m

and compute 4>(m), then express Z/(m)* as a direct product of its p-Sylow

subgroups for all p\4>(m). For each such p , use the characters of order p to

find a generating set for the subgroup; then take the union of these generating

sets.

Two consequences of Theorems 2 and 3 are notable. First, if the ERH is

true, then a composite number m has a witness for its compositeness (in the
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sense of [30 or 43]) that is at most 2 log m . Second, if the ERH is true, then
2

(m) is generated by the numbers less than 3 log m that are relatively prime

to m .

The process used to prove Theorems 2 and 3 can be automated. We

will illustrate using Lemma 6.1, which implies bounds of the form x <

(C, log m + C2)2, valid for all m > m0 , in the following way. First, the result

of Lemma 6.1 is equivalent to

y/X <
(a+l)2

2a + 1
1 +r(x))[log m + t(x)] + (a+ 1) s(x).

For the moment assume that m and a axe fixed. Then any value of x greater

than exp((a + l/2)~ ) that makes the above inequality false is an upper bound

on the least number outside G (this holds because for any x > x, either

log m + t(x') < 0 — in which case x is too large — or the right-hand side of

the inequality is a decreasing function of x ). The minimal such value x0 can

be found by binary search.

For any given value of m0 , choose a value of a that makes x0 small. (The

resulting function x0(a) seems to be convex, and a bisection-style minimization

procedure works well in practice.) Once values of a and x0 have been found,

set

C,
2a+1

(l+r(x0)), C2 = (a+i; t(x0)
l+r(x0) '

-+s{xQ)
°'  2a+1

Then, whenever m > m0, it must be true that x < (Cx log m + C2) . For,

assume this is not the case (otherwise the job is done). Then by the definition

of x , log m + t(x) > 0, so

v^ < {2a+\ (1 + r(x))tloS m + ^ + (a+ l)2s(x)

t(l + r(x0))[log m + t(x0)] + (a+ \)2s(x0) < C, log m + C2.
2a + 1

* ,2
Similarly, Lemma 6.2 gives bounds of the form x < (C. log m + C2 )  , where

and

C = (a+i;

c; = (a + i;

1 +r(xQ) ,<y(m0)
———f- + u(xA--y-

2a + 1 "log m0

t   X
1 + r(xo)   ,    /    x'

L + s{xQ)
°'  2a+1

The author wrote programs to implement the above ideas, y/ and li were

computed via published approximations [29, 10], and £ and £ were computed

by Euler-Maclaurin summation [15]. The results are summarized in Tables 1

and 2 of the appendix.
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These computations, and the computations used to verify Theorem 3 for

small m, showed that in Theorem 2, one can replace "2" by 2/ log 3 =

1.657071... , which is the best possible constant. Possibly this is also true

of Theorem 3, but no attempt has been made to verify such a claim.

7. Explicit bounds for the algebraic case

The purpose of this section is to provide explicit versions of Theorem 1 for

number fields besides the rationals. The computations are similar to those of

§6.
In this section, K denotes a number field of degree n > 2 and absolute

discriminant A (so A > 1 ). Let x be a nonprincipal character on the ideals

of K that is defined modulo f. We will first prove an'explicit degree bound in

the spirit of [32],

Lemma 7.1. Let 0(a) = log(27i) - yi(a + 1 ). Then, for any a > 0,

1
n <

(A2A/f)      /    1 l_

a+l     a0(a)

Proof. Consider the primitive character induced by x > and use the nonnega-

tivity of the expression in Lemma 5.6.   □

To get a concise analog to Lemmas 6.1 and 6.2, we introduce the following

"options":

1. The sign parameter ß is nonzero.

2. f / 1 , and the prime ideal p should be relatively prime to f.

3. The prime ideal p should have residue degree 1.

With each choice of the above options associate an index set / c {1, 2, 3},

and define the exceptional set S, accordingly. For instance, 7 = 5 = 0 if

ß = 0 and a bound is needed for the smallest p with x(p) / 1 •

Lemma 7.2. Let I  be a set of options (in the above sense) and assume that

X(2l) = l for all ideals with A/2l< x such that 21 £ S,. Then, if 0 < a < 1 ,

2Vf) + /(x)] + 50(x) + '

iei

2 < 5T-t( 1 + r(x))[log(A'tff) + t(x)] + s0(x) + ^s,(x),
(a+l)       ¿a+i

where r(x) is defined as in Lemma 6.1, and

t(x) = 2n(y/(a + 1) - log(27t)) + 2 (^ + i

log x + 1 ß-l ß5

S°{X)-     xa+l'2     '        ',(X)"a2v^ + (a-2)2x5/2'

S2ix) = e^i^]ogNU     ^{x) = 7Tß £ A(m)
m<y/x
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Proof. Combine Lemmas 4.4, 5.1, 5.4, 5.6, 5.7, and 5.9 as in the proof of

Theorem 1.   D

To get estimates valid for a wide range of fields and characters, it seems

reasonable to "normalize" the sfs to be in terms of log(A A/f). First, Lemma

7.1 gives positive constants A and B such that

ß <n<A log(A2A/f) + B

(taking a = 1 provides A = 0.36, B = 1.07 ). Evidently, log A/f < log(A2A/f).

Finally, the prime number theorem implies that there is a positive constant C

for which

J2 Mm)<Cy/x.
m<\/x

(Rosser and Schoenfeld [37] give C = 1.03883.) Combining the results cited

in this paragraph gives estimates that are summarized in the following table.

Bounds of the form s((x) < er(x) log(A A/f) + t(

i        Case rj; t( Remarks

0       always 0 %£i

1 ß>0        -Ä= + ,    ¿ in Jt± + ,    5 „i     ¿ = 0.36, £=1.07a%/f       (a—2) x ' a yfx       (a-2) x '

2 (P,ß = i      sfcv*^ o
3 degp=l ^ ^ C= 1.03883

Analogs to Theorems 2 and 3 are given in the following theorem.

Theorem 4 (ERH). Let K be a number field of degree greater than 1, and let

A be the absolute value of the discriminant of K. Let x be a nonprincipal

character of the ideals of K that is defined modulo f. Then:

X(p) í 1 occurs for Np < 3 log (A A/f),

X(p) t¿0, 1 occurs for Np < 121og (A A/f),
7        7

X(p) ̂ 0,1 a/io7 deg(p) = 1 occurs for Np < 181og"(A"A/f).

Proof. It is first necessary to find an absolute lower bound on A"A/f. Lemma

7.1 (with a = 1 ), together with the data on quadratic fields in [9], shows that

A2 A/f > 27 , attained when K = QKv/^I) and A/f = 3 ( A/f ̂  1, 2 because this

field has class number 1, and no prime ideal of norm 2). Now take a = 1  in
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Lemma 7.2 and rewrite the results, using the above estimates for s¡(x). Since

n>2, t(x)/3 + 2~I,=oT/(x) is (barely!) negative for x > 3log 27. Therefore,

x , the norm of the least appropriate prime ideal, satisfies

Vx<4
1 + r(x)

3
+E*,<

iei

x log(A-TVf),

and the results follow from checking that each coefficient is less than the square

root of the stated bound.   D

It is interesting to compare these bounds with those given by Oesterlé [34],

which estimate prime ideals p with a particular value of x(p) ■ Here, Theorem

4 only estimates p for which x(p) is nontrivial in some sense. However, the

two bounds are similar when x has degree 2; in the present notation, Oesterlé

gives 70 log (A A/f) as a bound for a p of least norm with x(p) 7^0, 1 , whereas
2     2

Theorem 4 gives a bound of 12 log (A A/f).

Theorem 4 implies also that the class group of a field of discriminant A

is generated by the prime ideals of norm at most 12 log A. In the quadratic

case, this may be improved by working directly with Lemma 7.2 (take n = 2,

a = 0.7, and use Minkowski's bound [25, p. 119] for small values of A), to

show that the prime ideals of norm less than 6 log" A generate the class group.

As explained in the previous section, one can find a good value of a, compute

the least x0 for which a bound holds, and use this to get explicit estimates of
2 2

the form x < (C¡ log(A TVf) + C2)   . The relevant formulas are

C, =(a+r
1 + r(x)

2a + 1 E*iX

and

C2 = (a+l]
.  ,(1 +r(x))     v-^        '

Í(X)   2Ï+1    +£T'W

Computed bounds based on these formulas are presented in Table 3 of the

appendix.

Acknowledgments

I would like to again thank Andrew Odlyzko, who suggested that I use Stark's

formula in my dissertation. The idea of using two constants in the tables was

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EXPLICIT BOUNDS FOR PRIMALITY TESTING 377

suggested by a referee. I also thank the referees and other readers of the paper

for many helpful comments.

Appendix

This appendix contains tabulated boin-ds that give improvements to Theo-

rems 2, 3 and 4. Besides providing values of the constants C, and C2, the

tables show x0 (rounded down) and the value of a at which this was attained.

ERH => the least x

m > mQ.

Table 1

Z/(m) - G is < (C, log m + C2)   for

10'

IO4
10s

106
10*
1010

I015

I020

1050

10'01

IO20'
10s0'

10'°'

-1 6 G

31
57
92
137

259
423
1020
1887
12778
52564
212956
1337754
5350275

1.415
1.336
1.284
1.248
1.200
1.170
1.128
1.105
1.059
1.038
1.025
1.015
1.009

C,

-4.123
-4.729
-5.168
-5.500
-5.994
-6.364
-7.011
-7.453
-8.847
-9.846
-10.733
-11.477
-11.307

0.621
0.521
0.461
0.422
0.371
0.338
0.289
0.262
0.193
0.156
0.127
0.096
0.076

-1 £ G

39
6»;

108
158
289
463
1086
1980
13035
53106
214077
1340649
5356178

1.374
1.307
1.263
1.232
1.190
1.163
1.124
1.103
1.058
1.038
1.025
1.015
1.009

C,

-3.192
-3.719
-4.109
-4.422
-4.889
-5.243
-5.865
-6.304
-7.662
-8.641
-9.504
-10.217
-10.026

a

0.617
0.523
0.467
0.426
0.375
0.342
0.293
0.264
0.195
0.156
0.127
0.096
0.076

ERH=>

m > m0.

Table 2

the least x e Z/(m)* - G is  < (Cx* log m + C2)   for

io3
w4

io5
IO6
IO8

IO10

IO'5

10"

10
10"
IO2'

IO51

10"

511

•1 G G

158
246
347
461

726
1042
2042
3342
17227
62946
237295
1413413
5529565

<A

2.133
1.942
1.811
1.716
1.585
1.500
1.374
1.305
1.159
1.098
1.061
1.033
1.021

c:

-2.140
-2.178
-2.203
-2.220
-2.242
-2.256
-2.268
-2.267
-2.171
-1.939
-1.474
-0.359

1.238

0.703
0.652
0.615
0.584
0.537
0.504
0.443
0.404
0.297
0.232
0.182
0.133
0.104

■IÍC

1 :6

269

3 75
494

769
1095
2121
3447
17493
63487
238402
1416260
5535372

2.102
1.919
1.794
1.702
1.576
1.493
1.370
1.302
1.158
1.098
1.061
1.033
1.021

c2

-1.240
-1.260
-1.272
-1.279
-1.285
-1.283
-1.271
-1.249
-1.087
-0.829
-0.345

0.857
2.486

0.717
0.662
0.623
0.592
0.545
0.508
0.447
0.406
0.297
0.234
0.184
0.133
0.104
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ERH--

Table 3

a suitable p exists with A/p < (C, log(A2A/f) + C2)2 for

AzA/f > An

10"
105

10"
1021

1051

10"
10"

\

102

105

10"

io21-

105'
10u

10"

X
102

105

1010

1020

1050

10'°'
1010'

102

105

1010

1020

1050
10ioo
.(,1000

ß = 0
*0

13
130
599
2475
15145
58881
5483128

ß = Q

123
585
1811
5625
26169
87338
6164175

0 = 0
*o

119

740
2933
11639
72314
288614
28800718

,8 = 0
*o

300
1359
4452
15280
83457
313974
29152988

*(P) ¥ 1

1.571
1.259
1.166
1.110
1.065
1.044
1.011

3.166
2.379
1.974
1.682
1.420
1.287
1.076

2.421
2.357
2.339
2.333
2.331
2.331
2.330

A
3.807
3.203
2.891
2.678
2.505
2.431
2.345

*-2

-3.570
-3.077
-2.350
-1.367

0.439
2.336
14.236

0.998
0.727
0.541
0.410
0.289
0.223
0.094

X(V)¥0, 1

C,

-3.468
-3.189
-2.885
-2.471
-1.701
-0.887

4.206

X(P)¥ 1

-0.211

0.083
0.293
0.442
0.560
0.606
0.643

X(9)¥0,

C\

-0.209
-0.013

0.150
0.308
0.458
0.534
0.634

0.932
0.775
0.666
0.564
0.445
0.367
0.182

;  degree p

0.934
0.789
0.721
0.682
0.654
0.645
0.637
1 ;  degree p

a

0.934
0.828
0.766
0.717
0.678
0.660
0.639

21
169
712
2800
16469
62751
5627299

133
616
1888
5820
26876
89266
6226716
1
ß = n

xo

133
782
3025
11838
72840
289688
28811673

1
B = n
*0

311
1393
4529
15451
83936
314986
29163843

A
1.776
1.416
1.280
1.194
1.122
1.086
1.027

A
3.268
2.441
2.017
1.714
1.441
1.303
1.082

A
2.564
2.430
2.379
2.354
2.340
2.335
2.331

C,

3.885
3.247
2.918
2.693
2.513
2.435
2.345

A
-3.498
-3.291
-2.773
-2.067
-0.797

0.471
7.283

C2

-3.510
-3.269
-2.997
-2.618
-1.913
-1.166

3.384

C2

-0.256
-0.001

0.216
0.391
0.527
0.588
0.643

C2

-0.235
-0.055

0.111
0.270
0.443
0.526
0.634

0.998
0.836
0.639
0.496
0.361
0.287
0.141

0.986
0.820
0.705
0.598
0.473
0.391
0.197

0.988
0.828
0.746
0.695
0.662
0.648
0.637

0.965
0.852
0.781
0.729
0.682
0.662
0.639
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